Statistical Estimation of Leakage Power Dissipation in Nano-Scale CMOS Digital Circuits using Generalized Extreme Value Distribution

نویسندگان

  • Hossein Aghababa
  • Alireza Khosropour
  • Ali Afzali-Kusha
  • Massoud Pedram
چکیده

In this paper, we present an accurate approach for the estimation of statistical distribution of leakage power consumption in the presence of process variations in nano-scale CMOS technologies. The technique, which is additive with respect to the individual gate leakage values, employs Generalized Extreme Value (GEV) distribution. Compared to the previous methods based on (two-parameter) lognormal distribution, this method uses GEV distribution with three parameters to increase the accuracy. Using the suggested distribution, the leakage yield of circuits may be modeled. The accuracy of the approach is studied by comparing its results with those of a previous technique and HSPICE-based Monte Carlo simulations on ISCAS85 benchmark circuits for 45 nm CMOS technology. The comparison reveals a higher accuracy for the proposed approach. The proposed distribution does not add to the complexity and cost of simulations compared to the case of the lognormal distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Implementation of CMOS VLSI Digital Circuits Using Self-Adjustable Voltage Level Technique

In present scenario, an increasing demand for mobile electronic devices such as cellular phones, laptop computers and personal digital assistants requires the use of power efficient circuits. To minimize the power dissipation and to increase the battery lifetime, the supply voltage, VDD has been scaled down continuously. So, scaling down the supply voltage, without scaling down the threshold vo...

متن کامل

Estimation of Power Dissipation of CMOS and finFET based 6T SRAM Memory

This paper provides the estimation of power dissipation of CMOS and finFET based 6T SRAM Memory. CMOS expertise feature size and threshold voltage have been scaling down for decades for achieving high density and high performance. The continuing reduce in the feature size and the corresponding increases in chip density and operating frequency have made power consumption a major concern in VLSI ...

متن کامل

Leakage in Nanometer Scale CMOS Circuits

High leakage current in deep sub-micron regimes is a significant contributor to the power dissipation of CMOS circuits as the CMOS technology scales down. Consequently, the identification and modeling of different leakage components is very important for estimation and reduction of leakage power, especially for low power applications. . This paper explores transistor leakage mechanisms and devi...

متن کامل

Statistical Modeling of Static Leakage Power and its Variability in CMOS Circuits

This paper focuses on the impact of process variations on the estimation of static leakage power and its variability. A statistical methodology for the estimation of static leakage power dissipation due to subthreshold leakage and gate tunneling leakage in 65 nm CMOS digital circuits, in the presence of process variations, is presented. A 2-input NAND gate is used as a representative library el...

متن کامل

Design and Implementation of Digital CMOS VLSI Circuits Using Dual Sub-Threshold Supply Voltages

Power dissipation in high performance systems requires more expensive packaging. In this situation, low power VLSI design has assumed great importance as an active and rapidly developing field. As the density and operating speed of CMOS VLSI chip increases, power dissipation becomes more significant due to the leakage current when transistor is OFF. This can be observed in both combinational an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013